研究方向
(1)振动信号处理
(2)旋转机械故障诊断、状态监测及寿命预测
(3)基于机器视觉的工业产品外观检测
3、主持科研项目:
(1)国家自然科学基金项目,数字孪生驱动的间歇式低速变载直驱风机主轴承故障机理及寿命预测研究(52365014),2024-2027,负责人
(2)国家自然科学基金项目,间歇式低速变载直驱风机主轴承故障演化机理及状态监测理论研究 (51965052),2020-2023,负责人
(3)国家自然科学基金项目,基于噪声参数最优ELMD方法多核多特征融合的风电机组齿轮箱状态监测关键技术研究(51565046),2016-2019,负责人
(4)自治区重点研发和成果转化计划项目,风电场关键装备“图-声-热”大数据智能采集与分析平台的研发与应用 (2023YFSW0003),2023-2025,负责人
(5)中央引导地方中央引导地方科技发展资金,基于数字栾生技术实时数据驱动的低速变载直驱风机主轴承虚实融合寿命预测关键技术研究(2022ZY0221),2018-2021,负责人
(6)内蒙古自治区科技计划发展项目,协整分析下基于大数据的风电机组齿轮箱故障诊断与性能预测研究(NMGKJJH007),2018-2021,负责人
(7)内蒙古自治区高等学校青年英才项目(A类:青年领军人才)(NJYT-18-A10),2018-2019,负责人
(8)内蒙古自治区高校基本科研业务项目,间歇式低速变载直驱风机主轴承故障演化机理及状态监测理论研究 (0406082202),2022-2024,负责人
(9)内蒙古自治区出国留学人员创新启动支持计划项目,基于深度学习的轴承故障诊断,2020-2023,负责人
(10)内蒙古自然科学基金面上项目,噪声参数最优的ELMD方法及其在轴承故障诊断中的关键技术研究(2015MS0512),2015-2017,负责人
(11)内蒙古高等学校科学研究项目,噪声参数最优复数域ELMD方法及在滚动轴承故障诊断中的应用研究(NJZY146),2015-2017,负责人
(12)内蒙古高等学校科学研究项目,基于经验模态分解的旋转机械故障诊断方法研究(NJZY1148),2011-2013,负责人
(13)内蒙古科技大学(青年学术骨干支持项目),基于噪声参数最优FELMD方法的风机状态监测研究(021601),2017-2019,负责人
(14)企业课题,烧结钕铁硼毛坯产品外观尺寸及缺陷智能检测,2022.05-2022.12,负责人
4、参与科研项目:
(1)自治区重点研发和成果转化计划项目,光伏电站积尘智能清扫决策及运维环境监测系统自主研发-光伏场站智能清扫决策系统研发(2022YFSJ0033),2022-2025,第二参与人
(2)内蒙古自然科学基金重大项目,基于大数据深度学习的风机健康状态监测研究(2018ZD06),2018-2021,第二参与人
(3)内蒙古自然科学基金项目,磁各向异性的磁巴克豪森噪声检测特征参量与方法研究(2022QN05010),2022-2024,第一参与人
(4)内蒙古自然科学基金项目,自振除鳞喷嘴腔内流场振荡机理研究及结构优化设计(2019LH05009),2019-2021,第一参与人
(5)企业课题,IOT物联网平台(扩展授权)服务,2022.12-2023.06,第一参与人
(6)企业课题,基于计算机视觉的风机叶片缺陷检测系统开发技术服务,2022.04-2022.12,第一参与人
(7)企业课题,输灰助推阀优化、输灰系统节能方案研究及新型助推阀设计,2022.05-2022.12,第一参与人
(8)企业课题,供热数据挖掘及室内温度预测模型开发,2022.05-2023.05,第一参与人
(9)企业课题,水泥生产过程在线设备故障预测及掌上预报系统开发,2023.09-2024.12,第五参与人
5、代表性论著
[1] Zhao Wentao, Zhang Chao*, Fan Bin, Wang Jianguo, Gu Fengshou, Oscar García Peyrano, Wang S, Lv D. Research on rolling bearing virtual-real fusion life prediction with digital twin[J]. Mechanical Systems and Signal Processing, 198(2023),110434.
[2]Zhang Chao, Qin Feifan, Zhao Wentao, Liu Tongtong, Li Jianjun. Research on Rolling bearing Fault Diagnosis Based on Digital Twin Data and Improved ConvNext[J]. Sensors, 2023,23(11):1-22.
[3] Zhao Wentao, Zhang Chao*, Wang Jianguo, et al. Research on Digital Twin Driven Rolling Bearing Model-Data Fusion Life Prediction Method[J]. IEEE ACCESS, 2023, 11: 48611-48627.
[4]Liu Tongtong, Wang Yanliang, Cui Lingli, Zhang Chao.Study on Fault Diagnosis Method of Key Components of the Gearbox Under Variable Working Conditions Based on Improved VMD Algorithm[J] .Mechanisms and Machine Science,2023, 1(1):74-89.
[5]Zhang Chengshi, Liu Tongtong, He Hongliang,Wang Yanliang, Zhang Chao. Mechanism Study of Symmetric Mechanism-Rolling Bearing Dynamic System Considering the Influence of Temperature Factor[J]. SYMMETRY-BASEL, 2023,15(12):1-22.
[6] Zhao Wentao, Zhang Chao*, Wang Jianguo, et al. Research on main bearing life prediction of direct-drive wind turbine based on digital twin technology[J]. Measurement Science and Technology, 2022, 34(2): 1-15.
[7]Lv Da, Zhang Chao*, Zhao Wentao,Wang Shuai.Research on Embedded Ball Screw Diagnosis System for Mechanical Fault Based on Bispectral Image[J].WIRELESS COMMUNICATIONS & MOBILE COMPUTING,2022(9):1-12.
[8] Rerui Fan, Zhang Chao*,Yu Xue, Jianguo Wang, Fengshou Gu. A Bearing Fault Diagnosis Using a Support Vector Machine Optimised by the Self-regulating Particle Swarm [J]. Shock and Vibration, 2020, 8:1-11.
[9]Chao Zhang, Haoran Duan, Yu Xue, Biao Zhang, Bin Fan, Jianguo Wang, Fengshou Gu. The Enhancement of Weak Bearing Fault Signatures by Stochastic Resonance with a Novel Potential Function [J]. Energies, 2020, 13:6348-6363.
[10] Jianguo Wang, Minmin Xu, Chao Zhang*, Baoshan Huang and Fengshou Gu. Online Bearing Clearance Monitoring Based on an Accurate Vibration Analysis [J]. Energies, 2020, 13:389-406.
[11] Zhang Chao,Li Zhixiong, Chen Shuai, Wang Jianguo, Zhang Xiaogang. Optimised ensemble empirical mode decomposition with optimised noise parameters and its application to rolling element bearing fault diagnosis [J]. Insight, 2016, 58(9):494-501.
[12] Zhang Chao,Li Zhixiong, Hu Chao, Chen Shuai, Wang Jianguo, Zhang Xiaogang. An optimized ensemble local mean decomposition method for fault detection of mechanical components [J]. Measurement Science and Technology, 2017, 28(3):1-12.
[13]Zhang Chao,Peng Zhogxiao, Chen Shuai, Li Zhixiong, Wang Jianguo. A gearbox fault diagnosis method based on frequency-modulated empirical mode decomposition and support vector machine [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2018, 232(2): 369-380.
[14] Zhao Wentao, Zhang Chao*, Wang Shuai, et al. Rolling Bearing Remaining Useful Life Prediction Based On Wiener Process[J]. Journal of Dynamics, Monitoring and Diagnostics, 2022: 229-236.
[15]Jiang, Yu; Li, Zhixiong; Zhang, Chao; Hu, Chao; Peng, Z. On the bi-dimensional variational decomposition applied to nonstationary vibration signals for rolling bearing crack detection in coal cutters[J]. Measurement Science and Technology, 2016, 27(6):1-12.
[16]Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing. Progress on Fault Mechanisms for Gear Transmissions in Coal Cutting Machines: From Macro to Nano Models[J]. Journal of Nanoscience and Nanotechnology. 2017, 17(4):2274-2284.
[17]Jianguo Wang, Shuai Chen, Chao Zhang*, Wenxing Zhang, Bo Qin, Wenjing Liu, Bin Yang. Application of Stochastic Resonance and Variational Mode Decomposition in Rolling Bearing Fault Diagnosis[C]. 30th International Conference Condition Monitoring and Diagnostic Engineering Management, Preston, UK, 2017.7.10-7.14
[18]HE Yuan-yuan, ZHANG Chao*,WANG Jian-guo and ZHU Teng-fei. Application of Adaptive Variable Scale Stochastic Resonance in Bearing Fault Diagnosis[C]. 31th International Conference Condition Monitoring and Diagnostic Engineering Management, Sun City, South Africa, 2018.7.1-7.5.
[19]ZHANG Chao, HE Yuanyuan, WANG Jianguo, ZHU Tengfei. Application of Human Cognitive Self Regulating Particle Swarm Optimization and Stochastic Resonance in Bearing Fault Diagnosis[C]. Xiamen, China, 2017.12.24-12.25.
[20]王建国,陈帅,张超. 噪声参数最优 ELMD 与 LS-SVM 在轴承故障诊断中的应用与研究[J]. 振动与冲击,2017,36(5):72-78+86.
[21]张超, 袁彦霞. 调频经验模态分解在轴承故障诊断中的应用[J]. 振动与冲击,2014,33(18):185-189.
[22]张超, 陈建军, 徐亚兰. 基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报, 2011,24(5):539-545.
[23]张超, 陈建军, 郭迅. 基于EMD能量熵和支持向量机的齿轮故障诊断方法[J]. 振动与冲击, 2010,29(10):216-220.
6、发明专利
[1]张超,李建军,张彪,段皓然,马芸婷,张晨.一种基于协整分析的风力发电机齿轮箱状态监测的方法,发明专利,ZL201811322961.9
[2]张超,范业瑞,石炜,杨柳,王建国,何园园,朱腾飞.一种优化多核多特征融合支持向量机用于轴承故障识别的方法,发明专利,201711318123.X
[3]张超,郭宇,秦波,杨斌,王建国,高君,王昱晨.一种用于轴承故障诊断的最优噪声参数选择的ELMD算法,发明专利,ZL201410376300.X
[4]崔玲丽,刘桐桐,王华庆,张超.一种变转速行星齿轮箱故障诊断方法,发明专利,ZL 202011419700.6
[5]李建军,李轲赛,刘慧婷,张宝华,张超. 人体动作行为的预测方法以及计算机设备,发明专利,ZL201911224818.0
[6]杜永兴,秦岭,张超. 基于改进的唐检测器卫星导航抗干扰阈值判定方法, 发明专利,ZL201410247422.9
7、学术专著
[1]张超. 基于振动分析的旋转机械故障诊断原理及应用[M],电子科技大学出版社,2014
[2]李雪竹,张超. 云计算背景下大数据挖掘技术与应用研究[M],电子科技大学出版社,2022
8、主讲课程
《机械工程控制基础》
《机械工程测试技术基础》
《信号与系统》
9、联系方式
通信地址:内蒙古自治区包头市昆区阿尔丁大街7号数智产业学院
电子邮箱:zhanghero@imust.edu.cn